

- 1. The estimated slope coefficient in a simple linear regression is:
 - (A) the predicted value of the dependent variable, given the actual value of the independent variable.
 - (B) the change in the independent variable, given a one-unit change in the dependent variable.
 - (C) the ratio of the covariance of the regression variables to the variance of the independent variable.
- 2. Given the relationship: Y = 2.83 + 1.5X

What is the predicted value of the dependent variable when the value of the independent variable equals 2?

- (A) 2.83.
- (B) -0.55.
- (C) 5.83.
- 3. When there is a linear relationship between an independent variable and the relative change in the dependent variable, the most appropriate model for a simple regression is:
 - (A) the log-log model.
 - (B) the log-lin model.
 - (C) the lin-log model
- 4. Consider the following analysis of variance (ANOVA) table:

Source	Sum of squares	Degrees of freedom	Mean sum of squares
Regression	556	1	556
Error	679	50	13.5
Total	1,235	51	

The R² for this regression is closest to

- (A) 0.45.
- (B) 0.55.
- (C) 0.82.

- 5. The coefficient of determination for a linear regression is best described as the:
 - (A) percentage of the variation in the dependent variable explained by the variation of the independent variable.
 - (B) percentage of the variation in the independent variable explained by the variation of the dependent variable.
 - (C) covariance of the independent and dependent variables.
- 6. A simple linear regression is said to exhibit heteroskedasticity if its residual term:
 - (A) does not have a constant variance.
 - (B) is nonnormally distributed.
 - (C) is not independently distributed
- 7. To determine a confidence interval around the predicted value from a simple linear regression, the appropriate degrees of freedom are:
 - (A) n-1.
 - (B) n.
 - (C) n-2.
- 8. Which of the following is least likely an assumption of linear regression?
 - (A) The variance of the error terms each period remains the same.
 - (B) The error terms from a regression are positively correlated.
 - (C) Values of the independent variable are not correlated with the error term.

MIGG EIILGI PI

- 9. A simple linear regression is a model of the relationship between:
 - (A) one dependent variable and one or more independent variables.
 - (B) one dependent variable and one independent variable.
 - (C) one or more dependent variables and one or more independent variables.
- 10. Consider the following analysis of variance (ANOVA) table

Source	Sum of squares	Degrees of freedom	Mean sum of squares
Regression	550	1	550.00
Error	750	38	19.737
Total	1,300	39	

The F-statistic for the test of the fit of the model is closest to:

- (A) 0.42.
- (B) 0.97.
- (C) 27.87.

- 11. To account for logarithmic variables, functional forms of simple linear regressions are available if:
 - (A) the independent variable is logarithmic, but not if the dependent variable is logarithmic.
 - (B) either the dependent or independent variable is logarithmic, but not both.
 - (C) either or both of the dependent and independent variables are logarithmic.
- 12. A simple linear regression is performed to quantify the relationship between the return on the common stocks of medium-sized companies (mid-caps) and the return on the S&P 500 index, using the monthly return on mid-cap stocks as the dependent variable and the monthly return on the S&P 500 as the independent variable. The results of the regression are shown below:

	Coefficient	Standard Error of Coefficient	t-Value	
Intercept	1.71	2.950	0.58	
S&P 500	1.52	0.130	11.69	
Coefficient of determination = 0.599				

The strength of the relationship, as measured by the correlation coefficient, between the on mid-cap stocks and the return on the S&P 500 for the period under study was

- (A) 0.130.
- (B) 0.774. a Veranda Enterprise
- (C) 0.599
- 13. In a simple regression model, the least squares criterion is to minimize the sum of squared differences between:
 - (A) the intercept term and the residual term.
 - (B) the predicted and actual values of the dependent variable.
 - (C) the estimated and actual slope coefficient.

