J.K. SHA

a Veranda Enterprise

CHAPTER 25

THE TERM STRUCTURE AND INTEREST RATE DYNAMICS

1. (B) Upward sloping.

CFA®

Explanation

The liquidity theory holds that investors demand a premium to compensate them for interest rate exposure and the premium increases with maturity. Add this premium to a flat curve and the result is an upward sloping yield curve.

(Module 25.5, LOS 25.h)

Related Material

SchweserNotes - Book 4

2. (C) inaccurate in both respects.

Explanation

Ross's comments about the relative values of spots, forwards, and yields-to-maturity is inaccurate; when the yield curve is upward-sloping, forward curve will be higher than spot curve and spot curve will be higher than yield curve. If the yield curve is downward-sloping, the yield curve will be higher than the spot curve which will be higher than the forward curve.

Riding the yield curve describes a strategy whereby an investor will buy a bond with a maturity greater than his investment horizon and sell it before maturity. This strategy will provide higher returns than buying a bond and holding it to maturity over the same period only if the yield curve is upward sloping and its shape remains stable over the investment period. If the yield curve steepens sufficiently the strategy may produce losses.

(Module 25.2, LOS 25.d)

Related Material

SchweserNotes - Book 4

3. (B) exclusively represent expected future spot rates.

Explanation

The pure expectations theory, also referred to as the unbiased expectations theory, purports that forward rates are solely a function of expected future spot rates. Under the pure expectations theory, a yield curve that is upward (downward) sloping, means that short-term rates are expected to rise (fall). A flat yield curve implies that the market expects short-term rates to remain constant.

(Module 25.5, LOS 25.h)

Related Material

SchweserNotes - Book 4

Explanation

Comparing the TED spread with the 10-year swap spread, the TED spread more accurately reflects the risk in the banking system, while the 10-year swap spread mostly reflects differing supply and demand conditions. An I-spread refers to a bond yield net of the swap rate of the same maturity.

J.K. SHA

a Veranda Enterprise

(Module 25.4, LOS 25.g)

Related Material

SchweserNotes - Book 4

5. buying the 2-year bond in the spot market, going long the forward contract and (C) selling the 3-year bond in the spot market.

Explanation

 $F(_{2,1}) = P_3/P_2 =$ \$98.98 but is quoted at \$94.55 and hence is cheap — buy it. A combination of a long position in the 2-year spot market, rolled over for 1 year at a locked-in forward rate (i.e., a long position in forward), would generate a return higher than the quoted 3-year spot rate.

(Module 25.1, LOS 25.a)

Related Material

SchweserNotes - Book 4

(C) 6. \$0.9345

Explanation A Veranda Enterprise

 $f(2,1) = (1+S_3)^3 / (1+S_2)^2 - 1= 7.01\%$ $F_{(2,1)} = 1/[1+f(2,1)] = 1/(1.0701) =$ \$0.9345 (Module 25.1, LOS 25.a) **Related Material** SchweserNotes - Book 4

7. (C) the same as it was on January 1, 20x6.

Explanation

If the spot rates evolve exactly as indicated by the forward curve, the forward price would remain unchanged.

(Module 25.2, LOS 25.c)

Related Material

SchweserNotes - Book 4

CFA®	J.N. SAAA CLASSES a Veranda Enterprise
8. (B)	an increase in the credit spread embedded in the reference.
	Explanation
	The swap spread is the spread between the fixed-rate on a market-rate swap and the Treasury rate on a similar maturity note/bond. Since the fixed rate is calculated from the reference rate yield curve, it is increased as the credit spread embedded in the
	reference rate yield curve increases.
	(Module 25.4, LOS 25.f)
	Related Material
	<u>SchweserNotes - Book 4</u>
9. (C)	bullish steepening.
	Explanation
	During recessionary times, central banks may reduce short-term rates leading to a bullish steepening.
	(Module 25.6, LOS 25.k)
	Related Material
	Schwesenhotes - Book 4
10. (C)	overvalued by \$3.75.
	Explanation
	There are two approaches to valuation of the bond.
	Approach 1: Bootstrap the missing spot rates:
	The two-year spot rate can be derived using the one-year spot rate (2.3%) and two-
	year par rate (3.14%) as follows:
	100 = $\frac{3.14}{1.023} + \frac{103.14}{(1+S_2)^2}$
	96.93 = $\frac{103.14}{(1+S_2)^2}$
	$(1+S_2)^2 = \frac{103.14}{96.93} = 1.06406$
	$S_2 = 3.15\%$
	Likewise, the three-year spot rate can be calculated using the one-year spot rate $(2, 2\%)$ the two wear and rate derived above $(2, 15\%)$ and the three wear are rate
	(4.35%):
	100 = $\frac{4.35}{1.023} + \frac{4.35}{(1.0315)^2} + \frac{104.35}{(1+S_3)^3}$
	91.66 = $\frac{104.35}{(1+S_3)^3}$
Fixed Incon	ne 488 The Term Structure and Interest Rate Dynamics

$$(1+S_3)^3 = \frac{104.35}{91.66} = 1.13845$$

$$S_3 = 4.42\%$$

Having derived the relevant spot rates. Holly can now value the three-year, 6% benchmark bond discounting the future cash flows using the spot rates:

$$P_0 = \frac{6}{1.023} + \frac{6}{(1.0315)^2} + \frac{106}{(1.0442)^3} = 104.58$$

Approach 2: Use the three-year par rate (4.35%) as the yield and use the standard TVM keys:

N=3; I/Y= 4.35%; PMT = 6; FV = 100; CPT PV = \$104.55

Note the difference in value is due to rounding error in calculating individual spot rates.

The bond is trading at \$108.30, and is therefore overvalued by \$3.75.

(Module 25.1, LOS 25.b)

Related Material

SchweserNotes - Book 4

11. (B) Segmented markets theory. Explanation

The segmented markets theory states that the shape of the yield curve is determined by varying levels of supply and demand for bonds of specific maturities, and investors only deal in bonds with their preferred maturities, regardless of yields on bonds of different maturity.

The preferred habitat theory has similar principles, but investors may be tempted to invest in bonds that are not of their preferred maturity if expected returns are attractive enough, with low prices and high yields.

(Module 25.5, LOS 25.h)

Related Material

SchweserNotes - Book 4

12. (A) key rate duration.

Explanation

Assuming an upward-sloping yield curve as a starting point, if short-term yields increase, but long-term yields remain constant, the yield curve will flatten. This is a non-parallel shift in the yield curve, which makes effective duration an inappropriate measure of bond price sensitivity. Key rate duration is the preferred measure for non-parallel shifts in the yield curve.

Effective duration is only suitable for measuring the sensitivity of a bond's price to parallel shifts in the yield curve. Macaulay duration measures the weighted average length of time to receive the present value of a bond's cash flows and is inappropriate in this instance.

(Module 25.6, LOS 25.i) Related Material SchweserNotes - Book 4

13. (B) key rate duration associated with the maturity of the rate that changed.

Explanation

This is how an analyst uses key rate durations: For a given change in the yield curve, each rate change is multiplied by the associated key rate duration. The sum of those products gives the change in the value of the portfolio. If only the five-year interest rate changes, for example, then the effect on the portfolio will be the product of that change times the five-year key rate duration.

(Module 25.6, LOS 25.i)

Related Material

SchweserNotes - Book 4

14. (C) bearish flattening.

Explanation

During expansionary times, to combat rising inflation, central banks may raise shortterm rates leading to a bearish flattening of the yield curve.

(Module 25.6, LOS 25.k)

Related Material

SchweserNotes - Book 4

a Veranda Enterprise

(C) higher.

15.

Explanation

Since a bond with an embedded call option would trade at a lower price than a comparable option-free bond (i.e., its market price would be lower), the additional spread needed to force the model value to the (lower) market price will be higher. Because the Z-spread would inadvertently include compensation for option risk as well as for credit and liquidity risks, it is not appropriate for valuing bonds with embedded options.

(Module 25.4, LOS 25.g)

Related Material

SchweserNotes - Book 4

16. (C) the real economy and inflation.

Explanation

Volatility in long-term rates is most likely linked to uncertainty about the real economy and inflation, whereas volatility in short-term rates is most likely linked to monetary policy.

(Module 25.6, LOS 25.j) Related Material

SchweserNotes - Book 4

17. (A) swap rate and the corresponding Treasury rate.

Explanation

The swap spread is the swap rate minus the corresponding Treasury rate.

(Module 25.4, LOS 25.f)

Related Material

SchweserNotes - Book 4

18. (C) added to the spot rate curve to generate discount rates for each of the bond's cash flows such that the present value of the cash flows is exactly equal to the market price of the bond.

Explanation

Z-spread is the constant spread added to the spot rate curve to generate discount rates which then value the bond at its current market price. The difference between yields of a risky and government bond will be same as the Z-spread only when the yield curve is flat. A Zero-volatility binomial tree does not exist!

(Module 25.4, LOS 25.g)

Related Material

SchweserNotes - Book 4 anda Enterprise

19. (C) less than current forward rates.

Explanation

When expected spot rates are less than the forward rates priced by the market, bonds are undervalued (they are discounted at too high a rate) and hence should be purchased.

(Module 25.2, LOS 25.c)

Related Material

SchweserNotes - Book 4

20. (C) liquidity preference theory.

Explanation

Under the liquidity preference theory, investors would earn an extra return for investing in longer-maturity bonds rather than in shorter-maturity bonds. Such extra positive risk-premium linked to maturity of the bonds is absent in the pure expectations and the market segmentation theory.

(Module 25.2, LOS 25.d)

Related Material

SchweserNotes - Book 4

21. (C) expected future spot rate plus a rate exposure premium.

Explanation

The liquidity theory of the term structure proposes that forward rates reflect investors' expectations of future rates plus a liquidity premium to compensate them for exposure to interest rate risk, and this liquidity premium is positively related to maturity. The implication of the liquidity theory is that forward rates are a biased estimate of the market's expectation of future rates, since they include a liquidity premium.

(Module 25.2, LOS 25.h)

Related Material

SchweserNotes - Book 4

22. (A) 6.36%

CFA®

Explanation

 $F_{(2,3)} = P_5 / P_2 = 0.7835 / 0.9426 = 0.8312$ $[1+ f(2,3)]^3 = 1 / F_{(2,3)} = 1 / 0.8312 = 1.2031$ f(2,3) = 6.36%(Module 25.1, LOS 25.a) **Related Material SchweserNotes - Book 4 Condot Enterprise**

23. (A) 67 bps.

Explanation

The 3-year swap fixed rate SFR3 is determined by solving: SFR₃ $(P_1 + P_2 + P_3) + P_3 = 1$ or SFR₃ (0.9615 + 0.9070 + 0.8396) + 0.8396 = 1 SFR₃ (2.7081) = 0.1604SFR₃ = 0.1604/2.7081 = 5.92%Swap spread = SFR₃ - 3-year government bond yield = 5.92% - 5.25% = 0.67% or 67 bps (Module 25.3, LOS 25.e) **Related Material** SchweserNotes - Book 4

24. (B) monetary policy.

Explanation

Volatility in short-term rates is most likely linked to monetary policy, whereas volatility in long-term rates is most likely linked to uncertainty about the real economy and inflation.

(Module 25.6, LOS 25.j)

Related Material

SchweserNotes - Book 4

25. (A) longer than the investor's horizon.

Explanation

If the yield curve is upward sloping and is expected to remain the same, higher returns can be obtained by riding the yield curve, i.e., buying bonds with a longer maturity than the investor's horizon.

J.K. SHA

a Verondo Enterprise

(Module 25.2, LOS 25.d)

Related Material

SchweserNotes - Book 4

26. (B) upward sloping.

Explanation

The liquidity theory holds that investors demand a premium to compensate them to interest rate exposure and the premium increases with maturity. When the yield curve under pure expectations is flat (i.e., interest rates in future are expected to be same as current rates), addition of liquidity premium (which increases with maturity) would result in an upward sloping yield curve.

(Module 25.5, LOS 25.h)

Related Material

SchweserNotes - Book 4

27. (C) Curvature

Explanation

Changes in the shape of yield curve is explained by (in order of importance): level, steepness and curvature.

Vacanda Enternrise

(Module 25.6, LOS 25.i)

Related Material

SchweserNotes - Book 4

28. (C) Short-term rates are typically more volatile than long-term rates.

Explanation

Volatility of rates is inversely related to maturity: long-term rates are less volatile than short-term rates.

(Module 25.6, LOS 25.j)

Related Material

SchweserNotes - Book 4

29. (B) more comparable across countries and have a greater number of yields at various maturities.

Explanation

Swap rate curves are typically determined by dollar denominated borrowing based on

MRR. These rates are determined by market participants and are not regulated by governments. Swap rate curves are not affected by technical market factors that affect the yields on government bonds. Swap rate curves are also not subject to sovereign credit risk (potential government default on debt) that is unique to government debt in each country. Thus swap rate curves are more comparable across countries because they reflect similar levels of credit risk. There is also a wider variety of maturities available for swap rate curves, relative to a yield curve based on US Treasury securities, which has only four on-the-run maturities of two years or more. Swap rate curves typically have 11 quotes for maturities between 2 and 30 years.

(Module 25.3, LOS 25.e)

Related Material

SchweserNotes - Book 4

30. (B) positive.

Explanation

TED spread is defined as MRR minus T-bill yield and is expected to be positive to reflect the higher credit risk implied in MRR relative to T-bills. This would hold true regardless of the slope of the yield curve.

(Module 25.4, LOS 25.g)

Related Material

SchweserNotes - Book 4

31. (A) 300 bps

Explanation

Since the spot rate curve is flat, we can simply compute the yield on the bond and subtract the spot rate from it to obtain the Z-spread.

PV = - 95.72; N = 15; PMT = 7.50; FV = 100; I/Y = ? = 8%.

Z-spread = 8% - 5% = 3% or 300bps

(Module 25.4, LOS 25.g)

Related Material

SchweserNotes - Book 4

32. (C) reflects sovereign credit risk.

Explanation

Swap rate curves are typically determined by dollar denominated borrowing based on MRR. These rates are determined by market participants and are not regulated by governments. Swap rate curves are not affected by technical market factors that affect the yields on government bonds. The swap rate curve is also not subject to sovereign credit risk (potential government default on debt) that is unique to each country.

(Module 25.3, LOS 25.e)

Related Material

<u>SchweserNotes - Book 4</u>

33. (C) level and curvature.

Explanation

The decrease in short-term and long-term rates is an indication of change in level of interest rates. Because intermediate-term rates change differently than the short-term and long-term rates, there is also a change in the curvature of the yield curve.

(Module 25.6, LOS 25.i)

Related Material

SchweserNotes - Book 4

34. (C) The segmentation theory.

Explanation

The market segmentation theory contends that lenders and borrowers have preferred maturity ranges, and that supply and demand forces in each maturity range determines yields. This theory relies on the idea that some investors have restrictions (either legal or practical) on their preferred maturity structure and that they are unwilling or unable to move out of their preferred ranges.

(Module 25.5, LOS 25.h)

Related Material

SchweserNotes - Book 4

35. (B) for the full investment horizon, or for part of it, and then rolling over the proceeds for the balance of the investment horizon at the forward rate.

Explanation

The pure expectations theory can be explained using a "break-even rate" line of reasoning. The break-even rate is the forward rate that leaves investors indifferent between investing for the full term of their investment horizon or investing in part of the horizon and rolling the investment over at the "break-even" forward rate for the remainder of the term.

(Module 25.5, LOS 25.h)

Related Material

SchweserNotes - Book 4

36. (A) steeper than the spot curve and above the spot curve.

Explanation

When the spot curve is upward sloping, the forward curve will be lie above the spot curve and will also be upward sloping with a steeper slope.

(Module 25.1, LOS 25.a)

Related Material

<u>SchweserNotes - Book 4</u>

37. (A) preferred habitat theory

Explanation

CFA®

Money market funds generally invest in short-term securities. Their inclination to chase higher yields in the longer maturity spectrum is consistent with the preferred habitat theory whereby investors will leave their preferred habitat if they are compensated with higher returns. If Market segmentation theory held, investors would not have left their market segment and therefore no regulatory action would be necessary.

(Module 25.5, LOS 25.h)

Related Material

SchweserNotes - Book 4

38. (B) Short-term holding period return of long-maturity bonds exceeds the short-term holding period returns of short-maturity bonds.

Explanation

Market evidence shows that short-term holding period returns from investing in longmaturity bonds exceed the short-term holding period returns from investing in shortmaturity bonds.

(Module 25.5, LOS 25.h)

Related Material

SchweserNotes - Book 4

39. (C) 10

Explanation

Select all forward rates f(j,k) such that $j + k \le 5$. There are 10 forward rates possible: f(1,1), f(1,2), f(1,3), f(1,4), f(2,1), f(2,2), f(2,3), f(3,1), f(3,2), f(4,1)(Module 25.1, LOS 25.a)

Related Material

SchweserNotes - Book 4

40. (B) long-term rates to be higher than investors' expectations of future rates, because of the liquidity premium

Explanation

The liquidity theory of the term structure proposes that forward rates reflect investors' expectations of future rates plus a liquidity premium to compensate them for exposure to interest rate risk, and this liquidity premium is positively related to maturity. The implication of the liquidity theory is that forward rates, since they include a liquidity premium, are a biased estimate of the market's expectation of future spot rates.

(Module 25.5, LOS 25.h)

Related Material

SchweserNotes - Book 4

41. (A) Bullish flattening.

CFA®a Véranda EnterpriseExplanationDuring periods of market turmoil, a flight to safety may reduce long-term government
bond yields resulting in a bullish flattening of the yield curve.
(Module 25.6, LOS 25.k)Related Material
SchweserNotes - Book 442. (B)7.09%
Explanation
 $S_1 = 5.00\%$ given

For the 2-year par bond,

100	=	6.00	106
100		(1.05)	$(1+S_2)^2$
		400	

94.29 =
$$\frac{100}{(1+S_2)^2}$$

 $(1+S_2)^2$ = 106/94.29 = 1.1242

6.03%

 $(1+S_2) = 1.0603$

For the 3-year par bond,

S₂

100 =
$$\frac{7.00}{(1.05)} + \frac{7.00}{(1.0603)^2}$$

 $87.11 = \frac{107.00}{(1+S_3)^3}$

 $(1+S_3)^3 = 107/87.11 = 1.2283$

 $(1+S_3)$ = 1.0709 or S_3 = 7.09%

(Module 25.1, LOS 25.b)

Related Material

SchweserNotes - Book 4

43. (B) local expectations theory.

Explanation

Local expectations theory asserts that in the very short term, the expected return for every bond is the risk-free rate but does not extend the risk-neutrality assumption to every maturity strategy like the unbiased expectations theory.

107.00

(1+ S

(Module 25.5, LOS 25.h)

Related Material

SchweserNotes - Book 4

44. (B) government spot curve.

Explanation

While wholesale banks extensively hedge their assets and/or liabilities using the swap market, retail banks typically have very little exposure to the swap market. Accordingly, the government spot curve is most appropriate for retail banks while the swap rate curve may be most appropriate for wholesale banks.

(Module 25.3, LOS 25.e)

Related Material

SchweserNotes - Book 4

45. (C) the fixed rate on an interest rate swap and the rate on a Treasury bond of maturity equal to that of the swap.

Explanation

A swap spread is the difference between the fixed rate on an interest rate swap and a Treasury bond of maturity equal to that of the swap.

(Module 25.4, LOS 25.f)

Related Material

SchweserNotes - Book 4

46. (B) 3% if the bond is held to maturity provided that the yield curve remains flat at 3%.

Explanation

There is no price risk for a default-free bond held to maturity. However, there is reinvestment risk for the coupon payments received during the life of the bond (in this instance, the bond is a par bond and hence has the same coupon rate as its yield). If the yield curve shifts down, the reinvestment rate would be lower and the realized holding period return would be lower than 3%.

(Module 25.1, LOS 25.a)

Related Material

<u>SchweserNotes - Book 4</u>

47. (B) interest rates are expected to increase in the future.

Explanation

The yield curve slopes upward because short-term rates are lower than long-term rates. Since market rates are determined by supply and demand, it follows that investors (demand side) expect rates to be higher in the future than in the near-term. (Module 25.5, LOS 25.h)

Related Material

SchweserNotes - Book 4

CEA	8	J.K. SHAH CLASSES
48.	(B)	purchase bonds because the market is discounting future cash flows at "too high" of a discount rate. Explanation If an investor believes future spot rates will be lower than indicated by today's forward rates, then she should purchase bonds (at a presumably attractive price) because the market appears to be discounting future cash flows at "too high" of a discount rate. (Module 25.2, LOS 25.c) Related Material SchweserNotes - Book 4
49.	(C)	Segmented markets theory. Explanation Under segmented markets theory investors in one maturity segment of the market will not move into any other maturity segments. (Module 25.5, LOS 25.h) Related Material SchweserNotes - Book 4
50.	(A)	increase the duration of the portfolio. Explanation The question is asking for least appropriate strategy. Given an expectation of steepening of the yield curve, an active bond manager would reduce the duration of the portfolio. (Module 25.2, LOS 25.c) Related Material SchweserNotes - Book 4
51.	(A)	2.01% Explanation $S_1 = 1.00\%$ given For a 2-year bond, $100 = \frac{2.00}{(1.01)} + \frac{102}{(1+S_2)^2}$ $98.01 = \frac{102}{(1+S_2)^2}$ $(1+S_2)^2 = 102/98.01 = 1.0407$ $(1+S_2) = 1.0201$ $S_2 = 2.01\%$ (Module 25.1, LOS 25.b) Related Material SchweserNotes - Book 4
52.	(A)	the yield curve usually slopes upward.

Explanation

The pure expectations hypothesis says that the shape of the yield curve only reflects expectations of future short-term rates. Yet, the yield curve generally slopes upward. The liquidity theory says that the yield curve incorporates expectations of short-term rates; however, the tendency for the yield curve to slope upward reflects the demand for a higher return to compensate investors for the extra interest rate risk associated with bonds with longer maturities.

Veranda Enterprise

(Module 25.5, LOS 25.h)

Related Material

SchweserNotes - Book 4

53. (B) \$982.65

Explanation

Add the Z-spread to each of the spot rates to discount the bond's cash flows

54. (B) 6.06%

Explanation

 $\% \Delta P = -(0.50)(1.0) - (2.70)(0.25) - (7.23)(-1) = 6.06\%$ (Module 25.6, LOS 25.i) **Related Material** <u>SchweserNotes - Book 4</u>

55. (C) an interest rate for some future period.

Explanation

The pure expectations theory can be explained using a "locked-in-rate" line of reasoning, whereby forward rates are interpreted as the rate that can be "locked in" for some future period.

(Module 25.5, LOS 25.h)

Related Material

SchweserNotes - Book 4

ed expectations theory,
future spot rates. This
nean of future expected
theory implies that the
re spot rate.
term rates (tightening short-term rates) of the
e in longer-term yields. erm bullet portfolio. A

SHAH

shift to longer-term bullet would be most advantageous but would increase the duration of the portfolio (not duration-neutral). A shift to short bullet portfolio would not capitalize the expectations in Forecast 2.

(Module 25.6, LOS 25.k)

Related Material

f(1,1)

6%

SchweserNotes - Book 4

61.

(C)

Explanation

$$f(1,1) = (1+S_2)^2 / (1+S_1) - 1 = 6\%$$

$$f(2,1) = ((1+S_3)^3 / (1+S_2)^2 - 1 = 7\%$$

(Module 25.1, LOS 25.a)

Related Material

SchweserNotes - Book 4

62. (A) may have any shape.

Explanation

The liquidity theory holds that investors demand a premium to compensate them to interest rate exposure and the premium increases with maturity. Even after adding the premium to a steep downward sloping yield curve the result will still be downward sloping.

(Module 25.5, LOS 25.h)

Related Material

SchweserNotes - Book 4

63. (C) Walsh is incorrect with respect to both interest rate volatility and term structure. Explanation

Option pricing models assume a constant volatility of interest rates but not a constant level of interest rates. Walsh's first statement is incorrect. The market segmentation theory says that the term structure of interest rates is determined solely by the supply/demand for a given maturity sector. The statement is incorrect, however, because high demand from investors (who wish to lend money) would push interest rates lower, not higher, as observed in the term structure.

(Module 25.3, LOS 25.e)

Related Material

SchweserNotes - Book 4

64. (A) Decrease the key rates at the short end of the yield curve.

Explanation

Decreasing the key rates at the short end of the yield curve makes an upward sloping yield curve steeper. Performing the corresponding change in portfolio value will determine the risk of a steepening yield curve.

(Module 25.3, LOS 25.e)

Related Material

SchweserNotes - Book 4

65. (C) 4.08%

CFA®

Explanation

SFR₂ can be computed as:

$$SFR_2 / (1 + S_1) + SFR_2 / (1 + S_2)^2 + 1/(1 + S_2)^2 = 1$$

 $SFR_2 / (1.0305) + SFR_2 / (1.041)^2 + 1/(1.041)^2 = 1$

 $SFR_2 / (1.0305) + SFR_2 / (1.0837) + 1/(1.0837) = 1$

 $SFR_2 / (1.0305) + SFR_2 / (1.0837) = 0.07722$

 $SFR_{2}(1/(1.0305) + 1/(1.0837)) = 0.07722$

SR₂(1.8932) = 0.07722 and a Enterprise

SFR₂ = 0.07722/1.8932 = 0.0408 or 4.08%

(Module 25.4, LOS 25.f)

Related Material

SchweserNotes - Book 4

66. (A) correct.

Explanation

A widening TED spread is an indicator that interbank loans are becoming more risky, and that market participants believe banks are becoming more likely to default.

(Module 25.4, LOS 25.g)

Related Material

SchweserNotes - Book 4

67. (A) changing the yield of a specific maturity. Explanation

. SHAH

(Module 25.6, LOS 25.i)

Related Material

SchweserNotes - Book 4

68. (B) incorrect because there are actually more maturity points to construct the swap curve.

Explanation

Terry's justification is incorrect. There are actually more maturity points in the swap market from which a swap curve can be derived. The rest of Terry's statements are correct.

(Module 25.6, LOS 25.i)

Related Material

SchweserNotes - Book 4

69. (A) TED spread.

Explanation

TED spread is the difference between the MRR (captures the risk of interbank loans) and T-bill yield. The MRR-OIS spread measures the difference between MRR and the overnight indexed swap rate, and is a measure of general credit risk and well-being in the banking system.

The Z-spread is the constant spread, when added to benchmark spot rates, makes the present value of a bond's future cash flows equal to its market value. The Z-spread measures credit, liquidity, and option risk on a risky bond.

(Module 25.4, LOS 25.g)

Related Material

SchweserNotes - Book 4

70. (B) Statement 2 but not statement 1.

Explanation

Swap rates are not spreads and hence the swap rate curve does not indicate credit spread. The swap rate curve can be used instead of government bond yield curve to indicate premium for time value of money.

(Module 25.3, LOS 25.e)

Related Material

SchweserNotes - Book 4

J.K. SHAH C L A S S E S a Veranda Enterprise

CFA®

71. (C) Swap rates are less volatile than government bond yields.

Explanation

Lower volatility of swap rates relative to government bond yields as a generalization is an incorrect statement.

(Module 25.3, LOS 25.e)

Related Material

SchweserNotes - Book 4

