		CHAPTER 7
		INTRODUCTION TO LINEAR REGRESSION
1.	(C)	percentage of the variation in the dependent variable explained by the variation of the independent variable. Explanation
		The coefficient of determination for a linear regression describes the percentage of the variation in the dependent variable explained by the variation of the independent variable.
		(Study Session 2, Module 7.2, LOS 7.d) Related Material
		SchweserNotes - Book 1
2.	(C)	The error terms from a regression are positively correlated.
		Explanation One assumption of linear regression is that the error terms are independently
		distributed. In this case, the correlations between error terms are expected to be
		zero. Constant variance of the error terms and no correlation between the independent variable and the error term are assumptions of linear regression. (Study Session 2, Module 7.1, LOS 7.c)
		Related Material
		<u>SchweserNotes - Book 1</u>
3.	(A)	5.83.
		Explanation Y = 2.83 + (1.5)(2) = 2.83 + 3 = 5.83.
		(Study Session 2, Module 7.3, LOS 7.g)
		Related Material
		SchweserNotes - Book 1
4.	(B)	0.45.
		Explanation
		R^2 = regression sum of squares / total sum of squares = 556 / 1,235 = 0.45.
		(Study Session 2, Module 7.2, LOS 7.e)
		Related Material
		SchweserNotes - Book 1

CFA	®	J.K. SHAH® ONLINE
5.	(A)	be rejected because the test statistic of -1.77 is less than the critical value.
		Explanation
		The test statistic is $(0.894 - 1.0) / 0.06 = -1.77$. The critical value with 200 - 2 = 198 degrees of freedom for 5% significance is -1.653. Because the test statistic of -1.77 is less than the lower critical value, we reject the hypothesis that b_1 is greater than or equal to 1.0.
		(Study Session 2, Module 7.2, LOS 7.f)
		Related Material
		SchweserNotes - Book 1
6.	(B)	27.87.
		Explanation
		F = mean regression sum of squares / mean squared error = 550 / 19.737
		= 27.867.
		(Study Session 2, Module 7.2, LOS 7.e)
		Related Material
		SchweserNotes - Book 1
7.	(A)	0.774. Explanation
		We are given the coefficient of determination of 0.599 (R^2) and are asked to find the correlation coefficient (r), which is the square root of the coefficient of
		determination for a simple regression:
		$\sqrt{0.599} = 0.774$
		(Study Session 2, Module 7.2, LOS 7.d)
		Related Material
		SchweserNotes - Book 1