

Quantitative Method

1

- 5. In a test of independence based on contingency table data, degrees of freedom are the:
 - (A) sum of the number of rows and the number of columns.
 - (B) product of the number of rows minus one and the number of columns, minus one.
 - (C) sum of the number of rows and the number of columns, minus two.
- 6. To test a hypothesis that the population correlation coefficient of two variables is equal to zero, an analyst collects a sample of 24 observations and calculates a sample correlation coefficient of 0.37. Can the analyst test this hypothesis using only these two inputs?
 - (A) Yes.
 - (B) No, because the sample standard deviations of the two variables are also required.
 - (C) No, because the sample means of the two variables are also required.
- 7. A researcher wants to test whether the weekly returns on two stocks are correlated. The test statistic for the appropriate test follows a:
 - (A) chi-square distribution.
 - (B) t-distribution with n 1 degrees of freedom.
 - (C) t-distribution with n 2 degrees of freedom.
- 8. Student's t-distribution, level of significance for a two-tailed test:

df	0.20	0.10	0.05	0.02	0.01	0.001
16	1.337	1.746	2.120	2.583	2.921	4.015
17	1.333	1.740	2.110	2.567	2.898	3.965
18	1.330	1.734	2.101	2.552	2.878	3.922
19	1.328	1.729	2.093	2.539	2.861	3.883
20	1.325	1.725	2.086	2.528	2.845	3.850

Based on a sample correlation coefficient of -0.525 from a sample size of 19, an analyst calculates a t-statistic of $\frac{-0.525\sqrt{19-2}}{\sqrt{1-(-0.525)^2}}$ =-2.5433. The analyst can reject the

hypothesis that the population correlation coefficient equals zero:

- (A) at a 2% significance level, but not at a 1% significance level.
- (B) at a 1% significance level.
- (C) at a 5% significance level, but not at a 2% significance level.

Quantitative Method